308 research outputs found

    Climatic patterns in the establishment of wintering areas by North American migratory birds

    Get PDF
    Long-distance migration in birds is relatively well studied in nature; however, one aspect of this phenomenon that remains poorly understood is the pattern of distribution presented by species during arrival to and establishment of wintering areas. Some studies suggest that the selection of areas in winter is somehow determined by climate, given its influence on both the distribution of bird species and their resources. We analyzed whether different migrant passerine species of North America present climatic preferences during arrival to and departure from their wintering areas. We used ecological niche modeling to generate monthly potential climatic distributions for 13 migratory bird species during the winter season by combining the locations recorded per month with four environmental layers. We calculated monthly coefficients of climate variation and then compared two GLM (generalized linear models), evaluated with the AIC (Akaike information criterion), to describe how these coefficients varied over the course of the season, as a measure of the patterns of establishment in the wintering areas. For 11 species, the sites show nonlinear patterns of variation in climatic preferences, with low coefficients of variation at the beginning and end of the season and higher values found in the intermediate months. The remaining two species analyzed showed a different climatic pattern of selective establishment of wintering areas, probably due to taxonomic discrepancy, which would affect their modeled winter distribution. Patterns of establishment of wintering areas in the species showed a climatic preference at the macroscale, suggesting that individuals of several species actively select wintering areas that meet specific climatic conditions. This probably gives them an advantage over the winter and during the return to breeding areas. As these areas become full of migrants, alternative suboptimal sites are occupied. Nonrandom winter area selection may also have consequences for the conservation of migratory bird species, particularly under a scenario of climate change

    A long winter for the Red Queen: rethinking the evolution of seasonal migration

    Full text link
    This paper advances an hypothesis that the primary adaptive driver of seasonal migration is maintenance of site fidelity to familiar breeding locations. We argue that seasonal migration is therefore principally an adaptation for geographic persistence when confronted with seasonality – analogous to hibernation, freeze tolerance, or other organismal adaptations to cyclically fluctuating environments. These ideas stand in contrast to traditional views that bird migration evolved as an adaptive dispersal strategy for exploiting new breeding areas and avoiding competitors. Our synthesis is supported by a large body of research on avian breeding biology that demonstrates the reproductive benefits of breeding‐site fidelity. Conceptualizing migration as an adaptation for persistence places new emphasis on understanding the evolutionary trade‐offs between migratory behaviour and other adaptations to fluctuating environments both within and across species. Seasonality‐induced departures from breeding areas, coupled with the reproductive benefits of maintaining breeding‐site fidelity, also provide a mechanism for explaining the evolution of migration that is agnostic to the geographic origin of migratory lineages (i.e. temperate or tropical). Thus, our framework reconciles much of the conflict in previous research on the historical biogeography of migratory species. Although migratory behaviour and geographic range change fluidly and rapidly in many populations, we argue that the loss of plasticity for migration via canalization is an overlooked aspect of the evolutionary dynamics of migration and helps explain the idiosyncratic distributions and migratory routes of long‐distance migrants. Our synthesis, which revolves around the insight that migratory organisms travel long distances simply to stay in the same place, provides a necessary evolutionary context for understanding historical biogeographic patterns in migratory lineages as well as the ecological dynamics of migratory connectivity between breeding and non‐breeding locations.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149253/1/brv12476.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149253/2/brv12476_am.pd

    Breeding latitude predicts timing but not rate of spring migration in a widespread migratory bird in South America

    Get PDF
    Identifying the processes that determine avian migratory strategies in different environmental contexts is imperative to understanding the constraints to survival and reproduction faced by migratory birds across the planet. We compared the spring migration strategies of Fork‐tailed Flycatchers (Tyrannus s. savana) that breed at south‐temperate latitudes (i.e., austral migrants) vs. tropical latitudes (i.e., intratropical migrants) in South America. We hypothesized that austral migrant flycatchers are more time‐selected than intratropical migrants during spring migration. As such, we predicted that austral migrants, which migrate further than intratropical migrants, will migrate at a faster rate and that the rate of migration for austral migrants will be positively correlated with the onset of spring migration. We attached light‐level geolocators to Fork‐tailed Flycatchers at two tropical breeding sites in Brazil and at two south‐temperate breeding sites in Argentina and tracked their movements until the following breeding season. Of 286 geolocators that were deployed, 37 were recovered ~1 year later, of which 28 provided useable data. Rate of spring migration did not differ significantly between the two groups, and only at one site was there a significantly positive relationship between date of initiation of spring migration and arrival date. This represents the first comparison of individual migratory strategies among conspecific passerines breeding at tropical vs. temperate latitudes and suggests that austral migrant Fork‐tailed Flycatchers in South America are not more time‐selected on spring migration than intratropical migrant conspecifics. Low sample sizes could have diminished our power to detect differences (e.g., between sexes), such that further research into the mechanisms underpinning migratory strategies in this poorly understood system is necessary.Fil: Jahn, Alex. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Cereghetti, Joaquín. Universidad Nacional de La Pampa; ArgentinaFil: Cueto, Víctor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Centro de Investigación Esquel de Montaña y Estepa Patagóica. Universidad Nacional de la Patagonia "San Juan Bosco". Facultad de Ciencias Naturales - Sede Esquel. Centro de Investigación Esquel de Montaña y Estepa Patagónica; ArgentinaFil: Hallworth, Michael T.. Smithsonian Conservation Biology Institute; Estados UnidosFil: Levey, Douglas J.. National Science Foundation; Estados UnidosFil: Marini, Miguel Â.. Universidade do Brasília; BrasilFil: Masson, Diego. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; ArgentinaFil: Pizo, Marco A.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Sarasola, José Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaFil: Tuero, Diego Tomas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentin

    Decadal changes and delayed avian species losses due to deforestation in the northern Neotropics

    Get PDF
    How avifauna respond to the long-term loss and fragmentation of tropical forests is a critical issue in biodiversity management. We use data from over 30 years to gain insights into such changes in the northernmost Neotropical rainforest in the Sierra de Los Tuxtlas of southern Veracruz, Mexico. This region has been extensively deforested over the past half-century. The Estación de Biología Tropical Los Tuxtlas, of the Universidad Nacional Autónoma de México (UNAM), protects a 640 ha tract of lowland forest. It became relatively isolated from other forested tracts between 1975 and 1985, but it retains a corridor of forest to more extensive forests at higher elevations on Volcán San Martín. Most deforestation in this area occurred during the 1970s and early 1980s. Forest birds were sampled on the station and surrounding areas using mist nets during eight non-breeding seasons from 1973 to 2004 (though in some seasons netting extended into the local breeding season for some species). Our data suggested extirpations or declines in 12 species of birds subject to capture in mist nets. Six of the eight species no longer present were captured in 1992–95, but not in 2003–2004. Presence/absence data from netting and observational data suggested that another four low-density species also disappeared since sampling began. This indicates a substantial time lag between the loss of habitat and the apparent extirpation of these species. Delayed species loss and the heterogeneous nature of the species affected will be important factors in tropical forest management and conservation

    Genetic Variation among Temporally and Geographically Distinct West Nile Virus Isolates, United States, 2001, 2002

    Get PDF
    Analysis of partial nucleotide sequences of 22 West Nile virus (WNV) isolates collected during the summer and fall of 2001 and 2002 indicated genetic variation among strains circulating in geographically distinct regions of the United States and continued divergence from isolates collected in the northeastern United States during 1999 and 2000. Sequence analysis of a 2,004-nucleotide region showed that 14 isolates shared two nucleotide mutations and one amino acid substitution when they were compared with the prototype WN-NY99 strain, with 10 of these isolates sharing an additional nucleotide mutation. In comparison, isolates collected from coastal regions of southeast Texas shared the following differences from WN-NY99: five nucleotide mutations and one amino acid substitution. The maximum nucleotide divergence of the 22 isolates from WN-NY99 was 0.35% (mean = 0.18%). These results show the geographic clustering of genetically similar WNV isolates and the possible emergence of a dominant variant circulating across much of the United States during 2002

    Prevalence and Diversity of Avian Hematozoan Parasites in Asia: A Regional Study

    Get PDF
    Tissue samples from 699 birds from three regions of Asia (Myanmar, India, and South Korea) were screened for evidence of infection by avian parasites in the genera Plasmodium and Haemoproteus. Samples were collected from November 1994 to October 2004. We identified 241 infected birds (34.0%). Base-on-sequence data for the cytochrome b gene from 221 positive samples, 34 distinct lineages of Plasmodium, and 41 of Haemoproteus were detected. Parasite diversity was highest in Myanmar followed by India and South Korea. Parasite prevalence differed among regions but not among host families. There were four lineages of Plasmodium and one of Haemoproteus shared between Myanmar and India and only one lineage of Plasmodium shared between Myanmar and South Korea. No lineages were shared between India and South Korea, although an equal number of distinct lineages were recovered from each region. Migratory birds in South Korea and India originate from two different migratory flyways; therefore cross-transmission of parasite lineages may be less likely. India and Myanmar shared more host species and habitat types compared to South Korea. Comparison between low-elevation habitat in India and Myanmar showed a difference in prevalence of haematozoans

    Antibody Prevalence of West Nile Virus in Birds, Illinois, 2002

    Get PDF
    Antibodies to West Nile virus were detected in 94 of 1,784 Illinois birds during 2002. Captive and urban birds had higher seropositivity than did birds from natural areas, and northern and central Illinois birds’ seropositivity was greater than that from birds from the southern sites. Adult and hatch-year exposure rates did not differ significantly

    (Micro)evolutionary changes and the evolutionary potential of bird migration

    No full text
    Seasonal migration is the yearly long-distance movement of individuals between their breeding and wintering grounds. Individuals from nearly every animal group exhibit this behavior, but probably the most iconic migration is carried out by birds, from the classic V-shape formation of geese on migration to the amazing nonstop long-distance flights undertaken by Arctic Terns Sterna paradisaea. In this chapter, we discuss how seasonal migration has shaped the field of evolution. First, this behavior is known to turn on and off quite rapidly, but controversy remains concerning where this behavior first evolved geographically and whether the ancestral state was sedentary or migratory (Fig. 7.1d, e). We review recent work using new analytical techniques to provide insight into this topic. Second, it is widely accepted that there is a large genetic basis to this trait, especially in groups like songbirds that migrate alone and at night precluding any opportunity for learning. Key hypotheses on this topic include shared genetic variation used by different populations to migrate and only few genes being involved in its control. We summarize recent work using new techniques for both phenotype and genotype characterization to evaluate and challenge these hypotheses. Finally, one topic that has received less attention is the role these differences in migratory phenotype could play in the process of speciation. Specifically, many populations breed next to one another but take drastically different routes on migration (Fig. 7.2). This difference could play an important role in reducing gene flow between populations, but our inability to track most birds on migration has so far precluded evaluations of this hypothesis. The advent of new tracking techniques means we can track many more birds with increasing accuracy on migration, and this work has provided important insight into migration's role in speciation that we will review here

    Avian distribution and abundance records for the Sierra de Los Tuxtlas

    Get PDF
    ABSTRACT.-Between 1973 and 1987 we spent more than 36 months studying birds in the Sierra de Los Tuxtlas, on the Gulf coast of southern Veracruz, Mexico. This area contains the northernmost tropical rainforest in the western hemisphere, and has undergone relatively rapid deforestation in the past three decades. Its avifauna is diverse, consisting of both resident and migratory birds. We recorded 405 species, including 58 that have not been reported from the region before, as well as several that apparently have not been reported for Veracruz. Fully 350 species are documented by specimens; the remaining 55 consist of sight records only. We compare our results with past surveys of Los Tuxtlas and discuss 124 species whose status in the region is affected by our data. Of the 405 species we recorded in Los Tuxtlas, 96 (23.7%) appear on a list of bird species from the northern neotropics thought to be in danger due to tropical deforestation. Received 9 Jan. 1992, accepted 29 April 1992. The Sierra de Los Tuxtlas (hence Los Tuxtlas) is a rugged, mountainous region of volcanic origin, isolated from the Sierr
    corecore